Joint bias correction of temperature and precipitation in climate model simulations

نویسندگان

  • Chao Li
  • Eva Sinha
  • Daniel E. Horton
  • Noah S. Diffenbaugh
  • Anna M. Michalak
چکیده

Bias correction of meteorological variables from climate model simulations is a routine strategy for circumventing known limitations of state-of-the-art general circulation models. Although the assessment of climate change impacts often depends on the joint variability of multiple variables, commonly used bias correction methodologies treat each variable independently and do not consider the relationship among variables. Independent bias correction can therefore produce non-physical corrections and may fail to capture important multivariate relationships. Here, we introduce a joint bias correctionmethodology (JBC) and apply it to precipitation (P) and temperature (T) fields from the fifth phase of the Climate Model Intercomparison Project (CMIP5) model ensemble. This approach is based on a general bivariate distribution of P-T and can be seen as a multivariate extension of the commonly used univariate quantile mapping method. It proceeds by correcting either P or T first and then correcting the other variable conditional upon the first one, both following the concept of the univariate quantile mapping. JBC is shown to not only reduce biases in the mean and variance of P and T similarly to univariate quantile mapping, but also to correct model-simulated biases in P-T correlation fields. JBC, usingmethods such as the one presented here, thus represents an important step in impacts-based research as it explicitly accounts for inter-variable relationships as part of the bias correction procedure, thereby improving not only the individual distributions of P and T, but critically, their joint distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of climate model radiation, humidity and wind estimates on hydrological simulations

Due to biases in the output of climate models, a bias correction is often needed to make the output suitable for use in hydrological simulations. In most cases only the temperature and precipitation values are bias corrected. However, often there are also biases in other variables such as radiation, humidity and wind speed. In this study we tested to what extent it is also needed to bias correc...

متن کامل

A comparative study of quantitative mapping methods for bias correction of ERA5 reanalysis precipitation data

This study evaluates the ability of different quantitative mapping (QM) methods as a bias correction technique for ERA5 reanalysis precipitation data. Climate type and geographical location can affect the performance of the bias correction method due to differences in precipitation characteristics. For this purpose, ERA5 reanalysis precipitation data for the years 1989-2019 for 10 selected syno...

متن کامل

Use of Regional Climate Model Output for Hydrologic Simulations

Daily precipitation and maximum and minimum temperature time series from a regional climate model (RegCM2) configured using the continental United States as a domain and run on a 52-km (approximately) spatial resolution were used as input to a distributed hydrologic model for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River a...

متن کامل

Errors in climate model daily precipitation and temperature output: time invariance and implications for bias correction

When correcting for biases in general circulation model (GCM) output, for example when statistically downscaling for regional and local impacts studies, a common assumption is that the GCM biases can be characterized by comparing model simulations and observations for a historical period. We demonstrate some complications in this assumption, with GCM biases varying between mean and extreme valu...

متن کامل

Discharge simulations performed with a hydrological model using bias corrected regional climate model input

Studies have demonstrated that precipitation on Northern Hemisphere mid-latitudes has increased in the last decades and that it is likely that this trend will continue. This will have an influence on discharge of the river Meuse. The use of bias correction methods is important when the effect of precipitation change on river discharge is studied. The objective of this paper is to investigate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014